ImageCLEF 2009 Medical Image Annotation Task: PCTs for Hierarchical Multi-Label Classification
نویسندگان
چکیده
In this paper, we describe an approach for the automatic medical image annotation task of the 2009 CLEF cross-language image retrieval campaign (ImageCLEF). This work is focused on the process of feature extraction from radiological images and hierarchical multi-label classification. To extract features from the images we used an edge histogram descriptor as global feature and SIFT histogram as local feature. These feature vectors were combined through simple concatenation in one feature vector with 2080 variables. With the combination of global and local features we want to tackle the problem of intra-class variability vs. inter-class similarity and the problem of data unbalance between train and test datasets. For classification we selected an extension of the predictive clustering trees (PCTs) able to handle data types organized in hierarchy. Furthermore, we constructed ensembles (Bagging and Random Forests) that use PCTs as base classifiers to improve the performance.
منابع مشابه
Hierarchical annotation of medical images
In this paper, we describe an approach for the automatic medical annotation task of the 2008 CLEF cross-language image retrieval campaign (ImageCLEF). The data comprise 12076 fully annotated images according to the IRMA code. This work is focused on the process of feature extraction from images and hierarchical multi-label classification. To extract features from the images we used a technique ...
متن کاملDetection of Visual Concepts and Annotation of Images Using Ensembles of Trees for Hierarchical Multi-Label Classification
In this paper, we present a hierarchical multi-label classification system for visual concepts detection and image annotation. Hierarchical multi-label classification (HMLC) is a variant of classification where an instance may belong to multiple classes at the same time and these classes/labels are organized in a hierarchy. The system is composed of two parts: feature extraction and classificat...
متن کاملMedical Image Retrieval and Automatic Annotation: VPA-SABANCI at ImageCLEF 2009
Advances in the medical imaging technology has lead to an exponential growth in the number of digital images that needs to be acquired, analyzed, classified, stored and retrieved in medical centers. As a result, medical image classification and retrieval has recently gained high interest in the scientific community. Despite several attempts, such as the yearly-held ImageCLEF Medical Image Annot...
متن کاملOrganization Workshop Co-chairs Program Committee Additional Referees an Ensemble Method for Multi-label Classification Using a Transportation Model 49 Ignoring Co-occurring Sources in Learning from Multi-labeled Data Leads Evaluation of Distance Measures for Hierarchical Multi-label Classification in Functional Genomics
Hierarchical multi-label classification (HMLC) is a variant of classification where instances may belong to multiple classes that are organized in a hierarchy. The approach we used is based on decision trees and is set in the predictive clustering trees framework (PCTs), which is implemented in the CLUS system. In this work, we are investigating how different distance measures for hierarchies i...
متن کاملKDEVIR at ImageCLEF 2015 Scalable Image Annotation, Localization, and Sentence Generation task: Ontology based Multi-label Image Annotation
In this paper, we describe our participation in the ImageCLEF 2015 Scalable Concept Image Annotation task. In this participation, we propose an approach of image annotation by using ontology at several steps of supervised learning with noisy unlabeled data. In this regard, we construct tree-like ontology for each annotating concept of images using WordNet and Wikipedia. The constructed ontologi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009